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Progress in the last few years in constructive field theory has included (1) the 
construction of three-dimensional, non-Abelian gauge theories in a finite 
volume, (2) the construction of models that are asymptotically free or have a 
nontrivial fixed point, (3) a new presentation of perturbation theory yielding old 
and new large-order estimates, and (4) asymptotic completeness for renor- 
malizable models in the two-particle region; the existence of multiparticle struc- 
ture equations in the Euclidean region, provided that the coupling constant goes 
to zero as the energy increases; these equations yield formally the asymptotic 
completeness. In obtaining most of these results the phase space expansion 
pioneered by Glimm and Jaffe plays a crucial role. The first part of this review is 
a description of the phase space expansion in the "Ecole Polytechnique" version; 
the second part is devoted to the construction of models, the third part treats 
perturbation theory; and the last part deals with asymptotic completeness. 
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1. T H E  P H A S E  S P A C E  E X P A N S I O N  

This  is a h i g h - t e m p e r a t u r e  e x p a n s i o n  on  the  c o u p l i n g  b e t w e e n  phase  space  

cells c o m p l e t e d  by a r e n o r m a l i z a t i o n  p r o c e d u r e ;  each  phase  cell 

c o r r e s p o n d s  r o u g h l y  to  one  deg ree  o f  f r eedom.  

W e  descr ibe  the  e x p a n s i o n  for  the  ~04 m o d e l  in four  d i m e n s i o n s  c h o s e n  

as a " t o y "  mode l .  T h e  S c h w i n g e r  func t ions  are  g iven  by S = S / Z ,  

1 Centre de Physique th6orique, Ecole Polytechnique F-91128, Palaiseau, France. 

851 

0022-4715/87/0600-0851505.00/0 �9 1987 Plenum Publishing Corporation 



852 Magnen 

where Z is the partition function and d/~ is the Gaussian measure of 
covariance, or propagator 

C(p) = 1/(p 2 q- m 2) 

In fact we consider the model with a momentum cutoff r/p(p) 

tlo(p ) = exp[ - (p2 + m 2) M-2p]  

and a bare coupling constant 2p. 
The two main features of this theory are (1) the number of pertur- 

bation diagrams is n! at order n because the n vertices of the perturbation 
can all correspond to the same degree of freedom; the expansion will thus 
be of finite order for each phase cell; and (2) the two- and four-point 
diagrams are ultraviolet (primitively) divergent; this is the reason for the 
renormalization, which concerns only two- and four-point subdiagrams. 

1.1. Phase Space Cells 

The phase space cells are defined by a momentum localization and by 
a space localization. The momentum localization is defined by slicing the 
propagator 

P 
C ( p ) =  Y' C(p),  Ci(p )=  [r / i(p)-t /~ l(P)] C(p), with t / o ( p ) - 0  

i=1  

so that 
0 <~ C~(x - y) <~ 0(1 ) M z~ exp( - M  ~ I x -  Yl) 

Thus, the field ~0 is the sum of mutually orthogonal field q~ of covariance 
C i and of associated measure d/~; the unnormalized Schwinger functions 
are rewritten as 

_S(x, ..... xn)= Y~ I (Dil (X 1 ) 

il ,...,in 

where we see that the momentum slices are coupled by the exponential of 
the interaction. 

For each i we make a partition Di of the space in cubes of size M -4~. 
The size of the squares is dual to the size of the momenta and we have 

~ e x p [ - - M  ~ dist(A o, A)] ~< 0(1),  independently of /  
A E D i  

(i, A ~ ~)~) is a phase cell, and each field is localized in a phase cell. 
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The measure d# couples phase cells having the same index (but dif- 
ferent space localization) and the exponential of the interaction couples 
phase cells that are contained in one another but with different indices. 
Because of the above inequality all sums over cells in configuration space 
are done using the exponential decrease of the covariances. The bounds are 
then reduced to some kind of power counting: (1) M i by a field of index i 
( C  corresponds to the contraction of two fields); (2) M 4~ by a vertex 
summed in a cube of D~. 

1.2. A H igh -Tempera tu re  Expansion be tween  Phase Cells 

(i) For each pair of cells of the same index i we make an expansion 
of their coupling by the propagator C i. We generate this expansion by 
introducing one perturbation parameter for each pair of vertices: 

Ci(x, y; s)= ~ s~w, A(x) A'(y) Ci(x- y) 
A,A' ~ Di 

with s4,~,=sA,,~ and for all A, s~,~ = 1, where A(x) is the characteristic 
function of A. (What we really do is more complicated due to some 
technicalities without interest here.) We have 

C'(x, y; s ) l ,  ~ 1 = C'(x  - y)  

and at s~,~, = 0 there is no coupling between A and A'. We generate the 
expansion by doing for each pair (A, A') of �9 a first-order Taylor expan- 
sion around s~,~, = 1 of the measure d#i, 

! Re  - ~  du(s)I ,~ . j  = ,  

f (P 4 = Re d~(s)l,~,~,=o 

+ d, f dx dy c ' (x ,  - -  
J0 d 

(~ ~ ~4 

6qo(x) (5~(y) Re d#(s) 

which can be graphically described by 

~[~ ~'[] = ~D ~'[] 
with no p ropaga to r  

between A and 4 '  

+ ~[~ ~'D 
with at least one p ropaga to r  

between A and A' 

(ii) For each phase cell (i, A) we make an expansion on the coupling 
between phase cells with index smaller and with index bigger than i (and 
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which have the same localization in configuration space). We generate this 
in the following way: for each A~D~ we introduce a perturbation 
parameter t~ and define the t dependence 

[~oh(x)+t~o,(x)34+(1-t4)~ox(x) 4, x ~ 3  

where ~o h is the sum of the fields of index bigger than or equal to i; each q)J, 
j>~i, is by definition a high-momentum field (relative to d);  and ~0~ is 
the sum of the fields of index smaller than i and is by definition a low- 
momentum field (relative to d). 

This t-dependent interaction interpolates between the coupled and the 
uncoupled cases: for t~ = 1 it gives [~oh(x) + q? / (x ) ]  4 = ~ ( x )  4 and for t~ = 0 
it gives q~h(x) 4 + q~z(x) 4. We introduce this in the exponential of the interac- 
tion and make for each cell a Taylor expansion (to the fifth order) around 
t = 1. We obtain a sum of terms where there are in d (the cube of produc- 
tion) exactly 0, 1, 2, 3 or 4 vertices coupling ~0h and q~ if t~ = 0 and 5 or 
more if t~ r 0. Each perturbation vertex has at least one and at most three 
low-momentum fields (resp. high-momentum fields). 

A vertex that has fields in different cells connects them by definition. In 
this way we have explored all the structure of possible connections between 
cells. 

If we can prove that each connection is small, i.e., that 

(contributions) ~<e x,, 
all  c o n n e c t e d  se ts  

o f  n c u b e s  c o n t a i n i n g  A0 

with K large enough, then we have indeed constructed a convergent high- 
temperature expansion between phase cells. However, each connected 
subgraph cannot overlap with any other one; to relax this dependence, we 
make in each slice a Mayer expansion on the cubes, which is convergent if 
the above convergence condition holds. 

An almost local subgraph is by definition connected and such that all 
its external fields are of indices strictly lower than the ones of its internal 
fields. An almost local subgraph of index i, by definition, contains at least 
one field of index i and all its (internal) fields are of index bigger than or 
equal to i. 

2.3. The  Bounds 

The result of the expansion of S' is a sum of terms composed of 
integrals over s and t parameters of the product of fields belonging to 
perturbation vertices, of integrals over the localization of these vertices, of 
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the exponential of the interaction (which depends on t's), and of the 
integration over the fields with the measure d#(s). If R is a product of 
fields, a bound over the field integration is obtained using 

f 11/2 Re -~4 d# <~ f R 2 dt~ sup e -~~ 

o 
This bound is too crude for our purpose: it is possible that all the t pertur- 
bations relative to cubes of ~j produce vertices with three fields in the 
cubes of fi)i, i ~  j, containing them; the situation with one such vertex per 
cube of •.j corresponds to 3M 4~./- 0 fields in the corresponding cube of �9 
and the integration of these fields leads to a number of contraction schemes 
of order [-M 6~/-/)]number ofwrtices, and for each vertex the factor M 6(j ~) can- 
not be compensated by the volume M -4j of the localization cube of the 
vertex. However, if in R the number of fields per phase cell is uniformly 
bounded, then the number of contractions is controlled by the exponential 
decrease of the propagator in configuration space (it is sufficient to sum 
over the localization cube of the field that is contracted). An immediate 
consequence is that the integration over the high-momentum fields gives 

f (l~ high-momentum fields) 2 dp 

~< H { O(1 ) M* by high-momentum field of index i} 
i 

The propagators associated with the low-momentum fields have an 
exponential decrease, which is not related to the size of the production 
cube. To bound them, we use the positivity of the interaction. A low- 
momentum field in A is almost constant in A in fact: 

(fi,,(x) = ~o~ + cSq)(x), with ~o~ = M-T qo(x) dx, c~qo = qo - ~o~ 

where c~q)(x) can be considered as a high-momentum field. Using the 
H61der inequality, we obtain 

](,0A]~.,~ 1/4[A] l/4I)ofa(fi(x)4dx]l/4 

and for A E ~ ]AI 1/4=Mi, s o  that using the bound 

f I~ (fields q~h, &P, ~o~) e 
q~4 du 

f 1/2 ]q {qoh, 6~o} 2 d/~ sup I~ {(Pa} e ~4 
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and the fact that there is a finite number of fields per cell, we obtain the 
bound over the field integration given by the product of (1) M i by high- 
momentum field of index i, (2) M i by low-momentum field produced in a 
cube of index i, and j~l/4 by perturbation vertex (because there is at most 
three low-momentum fields per perturbation vertex, yielding at most 2-3/4, 
which together with the 2 of the vertex gives 21/4). 

Remark .  For fermions there is no problem with the low-momentum 
fields, since the Pauli principle prevents the accumulation of fields in the 
same phase cell. In practice we use the fact that the Gaussian integration 
over fermions generates determinants; in such a determinant each column 
is associated to a fermion and each line to an antifermion or vice versa; the 
Pauli principle is reflected in the fact that a determinant with two identical 
columns (or lines) is zero. 

It remains to bound the integration over the vertex localization. We 
proceed inductively from the slice p to the slice 1. The idea is to sum over 
each vertex using the strongest possible exponential decrease. We thus 
begin with the slice p; for each connected component there is a tree of 
propagators (coming from the cluster expansion) connecting the cubes of 
the component, i.e., having at least one field of index p and localized in it. 
Keeping one vertex fixed, we sum the others relative to it; the exponential 
decrease allows us to sum on the cubes containing the vertices and the sum 
of each vertex in the cube of ~p that contains it gives a factor M -4p. More 
generally, each vertex summed at step i yields a factor M 4i. For one 
connected subgraph contained in momentum slice i and having v vertices 
and e external fields ( 4 v -  e internal fields), we obtain the bound 

[O(1) ~l/4]v ( m  4i)~-i (mi)4v e __ [ O ( 1 )  21 /4 ]  L' m {4 ")i 

The general result is 

I~ I-O(1) 2'/4] H H  M[4 ~(i,/}] 
vertices i G~ 

where the G~ are the maximal almost local subgraphs made of fields of 
index bigger than or equal to i and e(i, l) is the number of external fields of 
G~. In particular, the expansion is convergent if, for all subgraphs G~, e(i, l) 
is bigger than 4. This is obviously not always the case, but the renor- 
malization procedure makes a rearrangement of terms such that in the new 
expansion all the e(i, l) are bigger than 4. The perturbation relative to the 
coupling of different momentum slices was pushed to the fifth order to 
factorize the two- and four-point almost local subgraphs; this allows us to 
compute explicitly each two- and four-point almost local subgraph. 
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Let us summarize the main point up to now of the expansion. 
The perturbation expansion has two parts: (i) The perturbation of the 

propagators, which is an expansion in configuration space and is local in 
momentum space; and (ii) the perturbation of the interaction, which is an 
expansion in momentum space and is local in configuration space. 

The bounds also have two parts: (i) the integration on the high- 
momentum fields, which is a bound local in momentum space and gives 
estimates on the coupling between different regions of the configuration 
space; and (ii) the domination of the low-momentum fields, which is local 
in configuration space, but nonlocal in momentum space. 

This "simple" factorization in local aspects but in different spaces 
allows the above "natural" construction of the expansion. 

1.4. R e n o r m a l i z a t i o n  

Let us look only at the four-point subgraphs. Let Fp(xl ..... x4) be the 
sum over all the almost local subgraphs of index p having four external legs 
~0(xt) ..... ~0(x4) (of index smaller than p). If there are n such subgraphs and 
if we sum independently on them we must compensate with an 1/n!; in fact, 
we obtain an exponential of this term; we can then associate each Fp with a 
coupling constant 2p and look at the sum 

f Fp(xl,..., x4) (P(Xl) . . .  (~o(x4) d X l . - . d x 4 -  f ,~p (~9(x) 4 dx 

= I FR(X1 '"" X4)[-(~O(Xl)""" (p(X4)-  (p(XI)4] dx1 "'" dX4 

- f (,~ + 6~)  q~(x) 4 dx 

with 

(~2p = f Fp(Xl, x2, x3, x4) dx 2 dx 3 dx 4 

which is independent of xl by translation invariance. We set 
2p l= , ip  + 62p. The first term on the lhs above is regularized; to see this, 
we rewrite the integrand: 

Fp(X 1 ..... X4){ @(X1)[ @(X2)- (cO(X1) ] (])(X3) (~O(X4) 

-~- (/')(Xl) q)(X2)[-q)(X3) -- q)(Xl) ] (~O(X4) 

+ ~o(x,) q~(x~) q~(x~)[~o(~)-~o(x,)]} 
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Then we express the differences of fields: 

q~(xk)-~0(xl)  = (xk-x~)V~o[xk+~l(xl- xk)],  0~<~1~. 1 

Because Fp is connected and of momentum M p it has an exponential 
decrease in x k -  x~ and we have 

[ x k - - x l [ e x p ( - - M  p [ x k - x l ] ) < ~ O ( 1 ) M  p 

On the other hand, a gradient applied on a field of index j gives a factor 
corresponding to the magnitude of the momentum: M j. We conclude that 
with regard to the bounds the regularizing operation is a multiplication by 
M - P M  j, j < p; we can describe it as the replacing of a field of index p by a 
field of lower index; the "regularized Fp" now has five external fields as far 
as the bounds are concerned. 

By induction we do this for all the almost local subgraphs with four 
external fields, which are then regularized; the price to pay is that the 
coupling constant is now an effective one, which is equal to 2i for the 
vertices whose biggest field index is i and 

-~i = )~p + 3)~p + ..- + 62 i + l 

and g2j is the zero-momentum value of the sum of all the almost local sub- 
graphs of index j (the renormalization procedure being already performed 
for the indices p to j + 1). 

A similar procedure is applied to the two-point functions. 
After the renormalization we have that e(i, l )>  4 for all G~i; however, 

the factors O(1)2  ~/4 by vertex are replaced for a vertex of biggest field 
index i by O(1)/~)/4; the convergence of the expansion thus depends on the 
2i being uniformly small, 2l (which in our case is near the renormalized 
coupling constant J~ren) being different from zero in order to have a 
nontrivial theory. Theories satisfying this condition are said to be 
asymptotically safe. In particular, if 62i> 0 for all i, then 2t > 2~+1 and the 
theory is asymptotically safe. If 2 ~ 0  as i ~  ~ ,  the theory is 
asymptotically free. 

2. C O N S T R U C T I O N  OF M O D E L S  

The renormalizable, asymptotically free models constructed in ways 
similar to the one described above are as follows: 

1. The massless ~o 4 model with an ultraviolet cutoff./8'13) For a lattice 
cutoff this is a model of Wiener paths (on the lattice) in four dimensions 
with a repulsive interaction. The model is infrared divergent and the 
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momentum slices are (M i, M (i-l)) instead of (M (~-~1, M~); the bare 
mass m is zero and one must compute the mass counterterm, which makes 
the theory massless; it is formally the sum of the one-particle, two-point 
irreducible graphs. One can compute this in terms of "one-particle 
irreducible" Mayer graphs; this allows a simple proof of the Borel 
summability of the theory in the bare coupling constant(8); this proves in 
particular that the theory is uniquely defined by its perturbation expansion. 

2. The massive Gross-Neveu model, which is a multicomponent 
(N>~2) fermionic theory with a quartic interaction, satisfies all the 
Wightman axioms. (9'14) It is somewhat simpler than (o4 because there is no 
need for the domination of the low-momentum fields, the theory being 
purely fermionic. Its renormalized perturbation series is Borel-summable. (4) 

3. The nonlinear a-model in the hierarchical approximation (in 
which by definition there is no coupling between phase cells of the same 
index)./16) 

All these models have in common that the first-order contribution to 
c~2 is positive. If all )~i are small enough so that 62, is mainly given by this 
first-order contribution, then 6s > 0 and as a consequence 

I ~ i < ~ i - - l  < "'" < ~ 1  

The biggest 2 is then "~1 and it suffices to choose 21 > O small enough to 
obtain that all 2i remain small. 

Asymptotically safe, nonrenormalizable models (thus having a non- 
trivial fixed point) have been constructed: 

1. The planar q)4 theory with a negative coupling constant in 4 + e 
dimensions. The theory with cutoff is defined by its perturbation series and 
one does a phase space expansion on the perturbation series. (6) 

2. The Gross Neveu model in 2 + ~ dimensions. (1~1 

The Gross-Neveu model in three dimensions with a large number N of 
components, which also has a nontrivial fixed point, can be similarly 
treated. (2) It must be thought of as a theory with a fermion field ~9 and an 
ultralocal bosonic field a with an interaction vertex ( t /N)  1/2 ~qJa. The 
theory at N infinite is exactly solvable and is a free theory in ~ and a. The 
corrections make an interaction that is small like (1/N) 1/2 and is well suited 
to dominate the low-momentum a fields. 

In these models the coupling constant has a dimension 2 i ~ a M  -~i, 
where a and ~ depend on the model; thus, 

~2~=2 i -2 i+1  ~ a M  ~i(1--M - s ) > 0  
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On the other hand, the leading contribution to 62 is positive and is 
explicitly computable (these are the two remarkable features of these 
theories); this allows the computation of a and e; the corrections are small, 
like powers of e or l/N, which here are the small parameters that make the 
expansion convergent. 

One of the main achievements of recent years is the construction by 
Balaban (for review see Ref. 1) of a non-Abelian gauge theory in three 
dimensions and in a finite volume as the limit of lattice approximations as 
the lattice spacing goes to zero. 

It remains to do this for a four-dimensional, non-Abelian gauge 
theory; this program is in progress. (1'5) 

An alternative program is to use a Euclidean-invariant cutoff which 
breaks the gauge invariance, and to restore it in the infinite-cutoff limit by 
ad hoc counterterms./11) The cutoff is realized by adding a quadratic term 
in the Lagrangian, i.e., for a momentum cutoff of index p: M 8~ 1~ A. 
This cutoff term stabilizes the theory, and the cutoff theory is finite without 
gauge choice. One can then define momentum slices using the cutoff term 
as the inverse of the propagator: 

1 
(Cp) -plOM 8p + 1 

where we have put a mass term as infrared cutoff, 

1 1 Cp=~ C i, (Ci)~=plOM 8(i+1)+1 p lOM-S i+ l  

Each momentum slice corresponds to a momentum localization; we can 
then speak of phase cells. 

Note that in a given phase cell in the small-field region (resp. in the 
big-field region) we are led to consider gauge transformation with momen- 
tum of the same scale as the one of the cell. 

The main problem in gauge theories is that there is no natural 
separation in the Lagrangian of a quadratic part (which gives the 
propagator)  and of an interaction part; indeed, these parts are not gauge- 
invariant. For example, in the Landau gauge (c~A~ = 0) the quadratic part 
is such that the theory is renormalizable, but the Lagrangian is not 
necessary large when the field is large, because of the Gribov ambiguities. 
This makes (naively?) the domination in the Landau gauge impossible. On 
the other hand, in the axial gauge (Ao = 0) there is no Gribov ambiguity 
and the Lagrangian is well suited for domination; the propagator is, 
however, such that the theory seems nonrenormalizable. Finally, one sees 
that only large fields have to be dominated; indeed (the power counting is 
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as for q~4), it is necessary only to dominate low-momentum fields (in A) 
larger than A 1/4. 

Balaban's recipe would consist, in our view, in splitting each phase cell 
into a small- and a big-field cell; then in perturbing locally in configuration 
space the coupling between small-fields cells (of different indices) and also 
the coupling between small- and big-fields cells; big-fields cells with 
neighboring indices (and contained in one another) are small (see below) 
and thus can be considered by convention connected. One can then define 
a local axial gauge for each big-fields cell (because there is no Gribov 
ambiguity with the axial condition). A Landau gauge can be defined 
elsewhere because there is no Gribov ambiguity in the small-field region. 
Then one does an ordinary phase cell expansion for the couplings between 
the small-fields cells. The big-fields cells are small just because the 
Lagrangian is large (the fact that the axial gauge is local makes possible an 
explicit link between the magnitude of the field and the one of the 
Lagrangian). In the small-fields cells it is an ordinary phase expansion of 
an asymptotically free theory without domination (the field being small). It 
is important to remark that as a consequence of our convention about 
gauge transformations in a cell (see above) the small- and big-field regions 
are (almost) stable. 

3. PERTURBATION THEORY A N D  LARGE-ORDER ESTIMATES 

One can apply the phase space expansion to the perturbation series 
and obtain a new description of the renormalization procedure and of the 
large-order estimates (first proved by de Calan and Rivasseau). (1~ The 
bound on the sum of the nth-order diagrams, which for ~04 is in cstnn!, has 
two origins: one is the bound on the perturbation series in each phase cell; 
it can be called the instanton effect, and reflects the fact that the number of 
diagrams is of order n!; and the other comes from expressing the 2f in terms 
of "~ren ()~ren = 21 -1- 6"~1), 

and 

so that 

")~i = 2ren - -  021  . . . . .  O/~i 

o 2 higher order terms 62i = cst./~ren -t- 

"~i = "~ ren  - -  (cst..~r2en In M i) + higher order terms 

Each effective coupling constant is given by its perturbative expansion. 
An nth-order diagram contributing to 62 can contain as many as n - 1  

822/47/5-6-17 
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logarithmic divergences, which are controlled by the power convergence of 
the diagram 

M- i ( ln  Mi) n 4 cst. n! 

It gives a contribution of order n! coming from a single diagram; this is the 
renormalon effect. It is believed that the perturbation series of q)44 is 
divergent and that the divergence is the one of the renormalon, but this 
remains to be proved. However, in the theory with a large number N of 
components one can prove this divergence and the existence of the first 
renormalon singularity (3) (following ideas of Parisi) because in this case the 
leading renormalon contribution (in the 1/N expansion) dominates the 
subleading contributions, which become smaller and smaller as N increases. 

The instanton contribution has been explored using a "Lipatov 
analysis" by Br6zin, Le Guillou, and Zinn-Justin. It gives the large-order 
behavior of the perturbation series for superrenormalizable models. For  
renormalizable models it should give the behavior of the sum of the pertur- 
bation series obtained by replacing each effective coupling constant by ~ren- 
The leading Lipatov behavior has been confirmed for ~0 4, which is 
superrenormalizable(2~ moreover, the existence of a singularity for the 
Borel transform of the perturbation series has been proved. (71 

For  (p4 only the upper bound was proved; let us give some 
indications. (21) For a theory with space and momentum cutoff it is 
straightforward to deduce Lipatov's upper bound from the Sobolev 
inequality, which reads 

f ~o(x)4 dx ~ K {f [Vqo(x)]2 dx} 2 

This inequality replaces one vertex by two vertices each time we use it. We 
thus get a factor corresponding to the sum over the phase cell which con- 
tains the extra vertex. If one does first (on the perturbation series) a phase 
space expansion (using this time zero Dirichlet boundary conditions to 
express the decoupling in the s-dependent propagator)  and then uses the 
Sobolev inequality (on the vertices not derived by the expansion) in each 
connected set of phase cells, then the above sum is restricted to the connec- 
ted set containing the ~o 4 vertex. Either the set is very large and the bound 
is obvious and does not require the use of the Sobolev inequality, or it is 
small and the sum on the phase cells is under control. 

Romark. The contributions coming from the vertices derived by the 
expansion are bounded, as in the phase space expansion, and because there 
are no two-, four-point subgraphs, there is no renormalization, hence no 
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renormalon effect. Note, however, that because we are in perturbation 
theory, we cannot dominate the low-momentum fields of the derived ver- 
tices, so we integrate them with the Gaussian measure. Doing this in the 
phase space expansion for (p4 leads (see above) to instanton divergences. 
Here, however, for the perturbation term of the nth order we have only to 
show that the part of the bound corresponding to the vertices derived by 
the phase expansion is small compared to n!. 

4. A S Y M P T O T I C  C O M P L E T E N E S S  A N D  M U L T I P A R T I C L E  
S T R U C T U R E  

Asymptotic completeness (AS) says that the Hilbert space of the states 
and of the asymptotic states are the same. In field theory this was proved 
for q04 in two dimensions and in the two- and three-particle regions. The 
proofs rely on the use of the Bethe-Salpeter equation (or its generalization 
to the three-particle case) 

F = G + G o F  (BS) 

where F is the amputated connected four-point function, G is the 
Bethe Salpeter kernel, which is the one-particle, irreducible, four-point 
function, and o is the convolution with two effective propagators. 

One then deduces from (BS) a discontinuity formula 

F + - F  = F +  * F  

where F+,  F are the boundary values of F from above and below the cut 
[which starts at (2mph) 2] in the physical sheet and * is the convolution on 
the mass shell. This discontinuity formula is equivalent to (AS). We briefly 
describe below some recent progress. 

(i) Generalization of the previous results to asymptotically safe 
models. 09) 

This is done using a modified (BS) equation introduced by Bros, 

F=GM-kGMOM F 

where ~  is the convolution with two two-point functions with an 
ultraviolet cutoff M. The term G M has the same decreasing properties as G, 
but dot not have a simple perturbative description. For the energies below 
M (the first momentum slice) we do the particle analysis done for q~4, and 
above M (the momentum slices of index bigger than one) we just control 
the theory using the phase space expansion. Indeed, the propagators and 
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phase cells corresponding to energies greater than M can be considered as 
one-particle irreducible, so that no particle analysis is needed. 

(ii) The multiparticle structure in general energy regions. To 
generalize the (BS) equation to general energy regions is an unsolved 
problem. However, the "perturbative" (BS) equation 

F = G + G o G + G o G o G +  . . .  

was generalized by Iagolnitzer, and corresponding discontinuity formulas 
were conjectured(17); they are believed to yield, in particular, asymptotic 
completeness. To establish these (perturbative) structure equations in the 
n-particle region, we use a cluster expansion where the Taylor expansion 
relative to each parameter s of the first momentum slice is pushed to order 
n + 1. One can then read by inspection the equations for the unnormalized 
theory and for nonoverlapping kernels. A kind of Mayer expansion gives, 
then, the structure equations. The final expansion is a high-temperature 
expansion I-between the cells of the slice 1, with now M >  (n + 1) m] where 
the n-particle structure in a given channel is extracted explicitly. The proof 
holds for the Euclidean theories and the coupling constant has to be 
smaller and smaller as the number of particles increases/18) 

To achieve (with a smaller and smaller coupling constant) the proof of 
asymptotic completeness, it remains to prove the discontinuity formulas. 
This is worked on, in three dimensions (for simplicity), for the weakly 
coupled q)4 model, which is a theory without bound states. I4) 

REFERENCES 

1. T. Balaban, Physica 124A:79 (1984). 
2. C. de Calan, P. Faria da Veiga, J. Magnen, and R. S6n6or, in preparation. 
3. F. David, J. Feldman, and V. Rivasseau, in preparation. 
4. H. Epstein, D. Iagolnitzer, J. Magnen, and R. S6n6or, in preparation. 
5. P. Federbush, A phase cell approach to Yang Mills theory, preprint. 
6. G. Felder, Commun. Math. Phys. 102:139 (1985). 
7. J. Feldman and V. Rivasseau, Ann. Inst. H. Poincark, to appear. 
8. J. Feldman, J. Magnen, V. Rivasseau, and R. S6n6or, Commun. Math Phys. 109:437 

(1987). 
9. J. Feldman, J. Magnen, V. Rivasseau, and R. S6ndor, Commun. Math. Phys. 103:67 (1986). 

10. J. Feldman, J. Magnen, V. Rivasseau, and R. S~n6or, Commun. Math. Phys. 98:273; 100:23 
(1985). 

11. J. Feldman, J. Magnen, V. Rivasseau, and R. S6n6or, in preparation. 
12. G. Gallavotti and F. Nicolo, Commun. Math. Phys. 100:545; 101:247 (1985). 
13. K. Gawedzki and A. Kupiainen, Commun. Math. Phys. 99:197 (1985). 
14. K. Gawedzki and A. Kupiainen, Commun. Math. Phys. 102:1 (1985). 
15. K. Gawedzki and A. Kupiainen, Preprint, IHES. 



Phase Space Analysis in Field Theory 865 

16. K. Gawedzki and A. Kupiainen, Preprint, IHES. 
17. D. Iagolnitzer, Fizika 17 (1985). 
18. D. Iagolnitzer and J. Magnen, Commun. Math. Phys. 110 (1987), to appear. 
19. D. Iagolnitzer and J. Magnen, Commun. Math. Phys. 111 (1987), to appear. 
20. J. Magnen and V. Rivasseau, Commun. Math. Phys. 102:59 (1985). 
21. J. Magnen, F. Nicolo, V. Rivasseau, and R. S6n~or, Commun. Math. Phys. 108:257 (1987). 


